Multiobjective Evolutionary Search for One-Dimensional Cellular Automata in the Density Classification Task
نویسندگان
چکیده
A key concern in artificial-life-oriented research in complex systems has been the relationship between the dynamical behaviour of cellular automata (CA) and their computational ability. Along this line, evolutionary methods have been used to look for CA with predefined computational behaviours, the most widely studied task having been the Density Classification Task (DCT). It has recently been showed that the use of an heuristic guided by parameters that estimate the dynamical behaviour of CA, can improve evolutionary search. On the other hand, an approach that has been successfully applied to several kinds of problems is the Evolutionary Multiobjective Optimization (EMOO). Here, the EMOO technique called Non-Dominated Sorting Genetic Algorithm is combined with the parameter-based heuristic, and successfullly applied to the DCT, suggesting a positive synergy out of using the two techniques in the search for CA.
منابع مشابه
Leveraging Evolutionary Search to Discover Self-Adaptive and Self-Organizing Cellular Automata
Building self-adaptive and self-organizing (SASO) systems is a challenging problem, in part because SASO principles are not yet well understood and few platforms exist for exploring them. Cellular automata (CA) are a well-studied approach to exploring the principles underlying self-organization. A CA comprises a lattice of cells whose states change over time based on a discrete update function....
متن کاملImproving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملRelational Databases Query Optimization using Hybrid Evolutionary Algorithm
Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...
متن کاملEvolving Cellular Automata to Perform Computations: Mechanisms and Impediments
We present results from experiments in which a genetic algorithm (GA) was used to evolve cellular automata (CAs) to perform a particular computational task—one-dimensional density classification. We look in detail at the evolutionary mechanisms producing the GA’s behavior on this task and the impediments faced by the GA. In particular, we identify four “epochs of innovation” in which new CA str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002